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Summary: The optically active 1,3,5-all-anti-triol 20 was synthesized starting from 

(S)-(-)-malic acid with complete stereoselection, based on the stereoselective 

reduction of cyclic B-keto acetal and successive transthioacetalization. 

Structural studies on polyene macrolide antibiotics have been extensively undertaken using 

modern techniques. However, even relative configurations of 1,3-polyols characterizing this 

type of antibiotics have not been determined yet, except for amphotericin 8.' Therefore, 

development of a method for the synthesis of stereochemically defined 1,3-polyol functions is a 

prerequisite for successful total synthesis. We recently developed a highly stereocontrolled 

method for the synthesis of 1,3-x-polyol based on the stereoselective reduction of a six- 

membered B-keto acetal Aand successive transthioacetalization. 
2 

We now report the synthesis 

of the optically active 1,3,5-all-anti-triol derivative 3 with virtually complete 

stereoselection by slightly modifying the synthetic strategy for 1,3-~yn-polyol.~ 

Our strategy for 1,3-m-polyol synthesis is as follows. K-Selectride reduction ofA, a 

key intermediate for the synthesis of 1,3-z-polyol, took place from the less hindered o-side 

to produce exclusively 3B(axial)-alcohol8, corresponding to l,3-E-diol.2 However, if&is 

converted to the other conformerCby ring inversion, the reduction should take place from the 

less hindered B-side producing 3a(axial)-alcoholo, corresponding to 1,3-anti-diol. The 

problem is how to fix the thermodynamically unstable conformerC. This difficulty was simply 

overcome by converting A [R=(cH~)~oH] into a ketone having a bicyclic acetal structure 

exemplified byh. 
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Treatment of aldehyde N4 prepared from (s)-(-)-malic acid, with LDA and MeCOO-t_Bu 

followed by PCC oxidation5 afforded B-keto esterAin 65% yield. Thioacetalization of2with 

ethanedithiol and BF3*Et20 produced ô-lactone&, and the hydroxyl group was protected with 

_t-BuPh2SiCló giving Glactoned in 64% yield. Reaction of4_with lithium enolate of &butyl 

acetate in THF at -78°C afforded hemiacetald as a single product in 93% yield.8 Treatment 

ofAwith CH(OMe)3 and DL-lo-camphorsulfonic acid (CSA) in MeOH-CH2C12 (78%) and successive 

dethioacetalization with NBS in aq MeCN gave ketonei (93%). Desilylation of6 with J-Bu4NF 

was accompanied by an elimination of MeOH affording enoney in 76% yield. CSA treatment of7 

in CH2C12 gave the desired bicyclic acetal87 in 48% yield (77% based on the consumed7) along 
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_a_~ LDA/MeCOO-i-Bu/THF/-78"C, & PCC/3A molecular sieves/CHBCl$rt, 5 HSCH2CH2SH/BF3*Et20/ 

CH2C12/rt, & &-BuPh$iCl/imidazole/DMF/rt, - CH(OMe)3/CSA/MeOH/CH2C12/rt, & NBS/AgN03/ 

Na2C03/aq MeCN/O“C,- D-Bu4NF.3H20/THF/rt,_ CSA/CH2C12/rt, j_~ K-Selectride/THF/-78°C, 

j: HS(CH,)3SH/BF3.Et20/CH2C12, J_z Me2C(OMe)B/CSA/CH2C12/rt, 1: DIBAH/toluene/-78aC, 

m: BrCH20Me/L-Pr2NEt/CH2ClB/reflux, n LiA1H4/Et20/00C, 0: AcBO/pyridine/rt 
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with the recovered7(38%). Reduction ofAwith K-Selectride in THF at -78°C took place, as 

expected, from the less hindered B-side to produce 3a(axial)-hydroxy isomerd as a single 

product in 82% yield. The configuration of the C-3 hydroxyl group was assigned as axial by 'H 

NMR analysis (i$,2=10 Hz; C-3 H). On treatment ofAwith 1,3-propanedithiol and BF3.Et20 in 

CH2C12 at -4O"C, transthioacetalization and lactone formation between the newly developed C-3 

hydroxyl group and the -butyl ester took place and the desired d-lactone 0' was produced in 

96% yield. Since &lactone 0 contains the same B-thioacetal-&lactone moiety having hydroxyl 

group on the side chain asA, the repetition of the same reaction sequence would produce the 

higher homologue of 1,3-anti-polyol. 

Here, we examined the termination of this reaction. After the protection of the glycol 

moiety as an acetonide (79%), &lactone 0 was reduced with DIBAH to lacto1 ll_ in 84% yield.' 

Treatment of ll_with CH(OMe)3 and CSA in MeOH-CH2C12 and successive dethioacetalization 

produced a 4 :5 mixture of 7$- and 7a-methoxy acetals 127 and 13'. In LiA1H4 reduction, 

7B(equatorial)-methoxy acetal l2_gave only the desired 5B(equatorial)-alcohol lJ.7, while 

7o(axial)-methoxy acetal gyielded a 3 :2 mixture of 5B(equatorial)-alcohol $ and its 

isomer s7. These results suggest that the anomeric alkoxy group should be fixed to equatoria 
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in order to induce the complete 3,5-anti stereoselection. After severa1 attempts, alkylation 

of ll_ with BrCH20Me and -Pr2NEt in CHECl under reflux was found to afford exclusively the 

required 7B(equatorial)-MOM ether '73 in 98% yield. lo 

treatment to ketone s7 in 79% yield. 

MOM ether l7_ was converted by NBS 

LiA1H4 reduction of 18 yielded only the expected 

5B(equatorial)-hydroxy isomer 03 in quantitative yield." The stereochemistry ofa was 

confirmed based on the NMR data (Wl,2=25 Hz; C-5 H: J6B 70=9.8 Hz). Thus, LiA1H4 reduction of 

the B-keto cyclic acetal having an equatorial alkoxy griup at the anomeric position was proved 

to be an attractive alternative to the aforementioned K-Selectride reduction of the 8-keto 

bicyclic acetal. Finally, treatment of 0 with 1,3_propanedithiol and BF3*Et20 in CH2C12 gave 

1,3,5-all-anti-triol derivativea in 59% yield. Acetylation of 20 with Ac in pyridine 

afforded the corresponding tetraacetatez7 in 78% yield. 

Thus, a highly stereoselective method for the optically active 1,3-anti-polyol was 

established. Application of the newly developed methods for the synthesis of 1,3-w- and 

&&i-polyols to the synthesis of natural products involving 1,3-z- and/or anti-polyol 

functions is under investigation. 
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