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STEREOSELECTIVE SYNTHESIS OF THE OPTICALLY ACTIVE FUNCTIONALIZED 1,3,5-ALL-ANTI-TRIOL

*
Tadashi Nakata,* Shigeto Nagao, and Takeshi Oishi
RIKEN (The Institute of Physical and Chemical Research)
Wako-shi, Saitama 351-01, Japan

Summary: The optically active 1,3,5-al1-anti-triol 20 was synthesized starting from
(8)-(-)-malic acid with complete stereoselection, based on the stereoselective
reduction of cyclic B-keto acetal and successive transthioacetalization.

Structural studies on polyene macrolide antibiotics have been extensively undertaken using
modern techniques. However, even relative configurations of 1,3-polyols characterizing this
type of antibiotics have not been determined yet, except for amphotericin B.T Therefore,
development of a method for the synthesis of stereochemically defined 1,3-polyol functions is a
prerequisite for successful total synthesis. We recently developed a highly stereocontrolled
method for the synthesis of 1,3-syn-polyol based on the stereoselective reduction of a six-
membered B-keto acetal A and successive ’cr'ans'chioaceta]1'zat1'on.2 We now report the synthesis
of the optically active 1,3,5-all-anti-triol derivative 20 with virtually compiete
stereoselection by slightly modifying the synthetic strategy for 1,3-M1-p0]y01.3

Qur strategy for 1,3-anti-polyol synthesis is as follows. K-Selectride reduction of A, a
key intermediate for the synthesis of 1,3-syn-polyol, took place from the less hindered a-side
to produce exclusively 3B(axia1)—a1coh01£, corresponding to 1,3—§ﬂ—diol.2 However, if A is
converted to the other conformer C by ring inversion, the reduction should take place from the
less hindered B-side producing 3c{axial)-alcohol D, corresponding to 1,3-anti-diol. The
problem is how to fix the thermodynamically unstable conformer L. This difficulty was simply
overcome by converting__li [R=(CH2)n0H] into a ketone having a bicyclic acetal structure
exemplified by E.

HOMe HOMe OH
1 3.0 1 3 OH OH OH OH
R/ x — R/ “H ——»
z “ 7 RTINS
o-75 N o 7
“~cooteu M “~cootBu H
-syn- 0-AJ
A E/ 1,3-syn-Polyol : 3
tBuOOC 5,:
¥ °
o Y
1 H H 1
Q / Q OH OH OH OH E
Meo : : Me0 : —H )\/:\/l\/i\ -
51k T v R I~ ™3
OH
\COOtBu \COOtBu
E, D 1,3-anti-Polyol

75



76

Treatment of aldehyde l}4 prepared from (S)-(-)-malic acid, with LDA and MeC00-t-Bu
followed by PCC oxidation™ afforded g-keto ester 2 in 65% yield. Thioacetalization of 2 with
ethaned1th1o] and BF3 Et20 prodt;ced 8-lactone 3, and the hydroxyl group was protected with
t- BuPh251C1 giving &-lactone 4, in 64% yield. Reaction of 4 with Tithium enolate of t-butyl
acetate in THF at -78°C afforded hemiacetal 57 as a single product in 93% yield. 8 Treatment
of 5 with CH(OMe)3 and DL-10-camphorsulfonic acid (CSA) in MeOH-CH C]2 (78%) and successive
dethioacetalization with NBS in aq MeCN gave ketone 6 (93%). Desilylation of § with n- Bu,NF
was accompanied by an elimination of MeOH affording enonejj in 76% yield. CSA treatment of 7
in CH2Cl2 gave the desired bicyclic acetal §_Z in 48% yield (77% based on the consumed 7) along
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2: LDA/MeC00-t-Bu/THF/-78°C, b: PCC/3A molecular sieves/CHZC]z/r‘t, c: HSCHZCHZSH/BF3-Et20/
CH2C12/r‘t, d: _\‘:-BuPhZSiC]/imidazo]e/DMF/rt, e: CH(OMe)g/CSA/MeOH/CHzmZ/Y‘t, f: NBS/AgN03/
Na CO /aq MeCN/0°C, g: n Bu4NF-3H20/THF/rt, h: CSA/CHZC]Z/rt, i: K-Selectride/THF/-78°C,
J: HS(CH ) SH/BF Et O/CH 2, k: Me2C(OMe)2/CSA/CH2C]zlrt, 1: DIBAH/toluene/-78°C,

m: BrCH OMe/l Pr NEt/CH2C12/ref1ux, n: LiA1H4/Et20/O°C, 0; Ac20/pyr1'd1'ne/rt
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with the recovered’zf(38%). Reduction of 8 with K-Selectride in THF at -78°C took place, as
expected, from the less hindered B-side to produce 3a(axial)-hydroxy isomer,gz as a single

W

product in 82% yield. The configuration of the C-3 hydroxyl group was assigned as axial by
NMR analysis (kh/2=10 Hz; C-3 H). On treatment of 9 with 1,3-propanedithiol and BF3-Et20 in
CH2C12 at -40°C, transthioacetalization and lactone formation between the negly developed C-3
hydroxyl group and the t-butyl ester took place and the desired é-lactone 10" was produced in
96% yield. Since §-lactone lg contains the same B-thioacetal-§-lactone moiety having hydroxyl
group on the side chain as 3, the repetition of the same reaction sequence would produce the
higher homologue of 1,3-anti-polyol.

Here, we examined the termination of this reaction. After the protection of the glycol
moiety as an acetonide (79%), 6-lactone 10 was reduced with DIBAH to Tactol 11 in 84% yie]d.9
Treatment of 11 with CH(OMe)3 and CSA in MeOH—CH2C12 and7success;ve dethioacetalization
produced a 4 : 5 mixture of 78~ and Jo-methoxy acetals 12° and 13°. 1In L1'A1H4 reduction,
78{equatorial)-methoxy acetal 12 gave only the desired 5B(equatorial)-alcohol l&?, while
7o(axial)-methoxy acetal 13 yielded a 3 :2 mixture of 5B(equatorial)-alcohol léz and its
isomer 197. These results suggest that the anomeric alkoxy group should be fixed to equatorial

LiA]H4
—
ether, 0°C
12: R=p-0Me 14 15: R=B8-0H
o~ o~ ~
li: R=a.-0Me lg; R=0.-0H

in order to induce the complete 3,5-anti stereoselection. After several attempts, alkylation
of 11 with BrCHZOMe and 1¢Pr2NEt in CHZC12 under reflux was found to afford exclusively the
required 78(equatorial)-MOM ether lzz in 98% yie]d.]o MOM ether 17 was converted by NBS
treatment to ketone l§7 in 79% yield. L1'A1H4 reduction of 18 yielded only the expected
5g(equatorial)-hydroxy isomer lgz in quantitative yie]d.1] The stereochemistry of 19 was
confirmed based on the NMR data (ﬂ]/2=25 Hz; C-5 H: g68,7a=9‘8 Hz). Thus, L1A1H4 reduction of
the B-keto cyclic acetal having an equatorial alkoxy group at the anomeric position was proved
to be an attractive alternative to the aforementioned K-Selectride reduction of the B-keto
bicyclic acetal. Finally, treatment of 19 with 1,3-propanedithiol and BF3-Et20 in CH2C12 gave
1,3,5-all-anti-triol derivative 20 in 59% yield. Acetylation of 20 with Ac20 in pyridine
afforded the corresponding tetraacetate‘gl7 in 78% yield.

Thus, a highly stereoselective method for the optically active 1,3-anti-polyol was

established. Application of the newly developed methods for the synthesis of 1,3-syn- and
anti-polyols to the synthesis of natural products involving 1,3-syn- and/or anti-polyol
functions is under investigation.
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